Standards for Documenting Finite-Fault Earthquake Rupture Models
نویسندگان
چکیده
In this article, we propose standards for documenting and disseminating finite-fault earthquake rupture models, and related data and metadata. A comprehensive documentation of the rupture models, a detailed description of the data processing steps, and facilitating the access to the actual data that went into the earthquake source inversion are required to promote follow-up research and to ensure interoperability, transparency, and reproducibility of the published slip-inversion solutions. We suggest a formatting scheme that describes the kinematic rupture process in an unambiguous way to support subsequent research. We also provide guidelines on how to document the data, metadata, and data processing. The proposed standards and formats represent a first step to establishing best practices for comprehensively documenting input and output of finitefault earthquake source studies.
منابع مشابه
Nonlinear dynamic rupture inversion of the 2000 Western Tottori, Japan, earthquake
[1] We have developed a systematic nonlinear inversion method for estimating rupture propagation and the underlying dynamic parameters for large historical earthquakes. The rupture modeling is carried out using a three-dimensional finite-difference method, and the inversion is implemented by a neighbourhood algorithm, minimizing the misfit between computed and observed near-fault seismograms. W...
متن کاملModeling near‐field tsunami observations to improve finite‐fault slip models for the 11 March 2011 Tohoku earthquake
[1] The massive tsunami generated by the 11 March 2011 Tohoku earthquake (Mw 9.0) was widely recorded by GPS buoys, wave gauges, and ocean bottom pressure sensors around the source. Numerous inversions for finite‐fault slip time histories have been performed using seismic and/ or geodetic observations, yielding generally consistent patterns of large co‐seismic slip offshore near the hypocenter ...
متن کاملA Nitsche-extended finite element method for earthquake rupture on complex fault systems
The extended finite element method (XFEM) provides a natural way to incorporate strong and weak discontinuities into discretizations. It alleviates the need to mesh discontinuities, allowing simulation meshes to be nearly independent of discontinuity geometry. Currently, both quasistatic deformation and dynamic earthquake rupture simulations under standard FEM are limited to simplified fault ne...
متن کاملSeismological asperities from the point of view of dynamic rupture modeling: the 2007 Mw6.6 Chuetsu-Oki, Japan, earthquake
We study the ground motion simulations based on three finite-source models for the 2007 Mw6.6 Niigata Chuetsu-oki, Japan, earthquake in order to discuss the performance of the input ground motion estimations for the near-field seismic hazard analysis. The three models include a kinematic source inverted from the regional accelerations, a dynamic source on a planar fault with three asperities in...
متن کاملNonuniform prestress from prior earthquakes and the effect on dynamics of branched fault systems
[1] To examine the effects of branched fault geometry on the dynamics of fault systems in the long term, we perform multicycle simulations on generic faulting models. An explicit finite element algorithm is used to simulate spontaneous dynamic rupture of earthquakes. The fault stress during the interseismic period is evaluated by an analytical viscoelastic model. We find that the fault prestres...
متن کامل